ERINDA Progress Meeting, Prague, January 16, 2011

Nuclear Physics Institute (NPI) of ASCR, Řež, Czech Republic

Vladimír Wagner
E_mail: wagner@ujf.cas.cz

about 200 employees (70 scientists)

More institutes in Řež area
the biggest is Nuclear Research Institute plc. (NRI)

Main device of NPI ASCR
Main device of NRI
Accelerator – Cyclotron U-120M

Beam: protons with energy from 10 up to 24 MeV (3μA)
deuterons with energy from 10 up to 20 MeV (3μA)
3He with energy from 17 up to 57 MeV (2μA)
alpha with energy from 20 up to 40 MeV (2μA)

High intensive 10^{11} cm$^{-2}$s$^{-1}$ negative ion beam:

protons with energy from 20 up to 37 MeV (20μA)
deuterons with energy from 10 up to 20 MeV (10μA)

Different tasks:

1) Radiopharmaceutical research and production
2) Astrophysical reaction research (mainly with 3He beam)
3) Neutron research using two different neutron generators
Fast neutron generators

NG 1 – white neutron source based on heavy water, beryllium and lithium targets

NG 2 – white source on H- beam (heavy water target) with very high neutron flux 10^{11} cm$^{-2}$s$^{-1}$
 spectrum range from 2 up to 34 MeV
 neutron irradiation of small samples, integral benchmark tests of fusion (IFMIF) relevant
 neutron activation cross sections

NG 2 - quasi monoenergetic p – 7Li source with neutron flux 10^9 cm$^{-2}$s$^{-1}$, energy 18 – 35 MeV

Negative ions high intensity for activation and irradiation experiments

NG - 1

Lower intensive beam for spectroscopic measurement

NG - 2
Neutron background studies

Description of background:

Usage of Uwamino – CYRIC measurements

Simulation by means of MCNPX (La150h)
Proton recoil measurements:
Proton energy – 27.6 MeV

Comparison:

<table>
<thead>
<tr>
<th></th>
<th>MCNPX</th>
<th>CYRIC</th>
<th>Recoil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total 10-29 MeV</td>
<td>4.60</td>
<td>5.24</td>
<td>5.05</td>
</tr>
<tr>
<td>Peak 23-29 MeV</td>
<td>3.31</td>
<td>3.35</td>
<td>3.18</td>
</tr>
<tr>
<td>Continuum</td>
<td>1.29</td>
<td>1.89</td>
<td>1.87</td>
</tr>
</tbody>
</table>

Crystal diamond measurements:
Presentation of Mario Pillon

Measured proton recoil spectrum – line
MCNPX simulation - squares

Line – CYRIC TOF spectra
Empty square – MCNPX simulation
Full square – deconvolution of proton recoil spectra
Tests to prepare Yttrium measurements

Proposal to ERINDA – Polish colleagues
Marcin Szuta, Stanislav Kilim

Cross-sections of neutron threshold reactions

Test methodical measurement:
neutron energy 32.5 MeV (only reactions (n,2n) and (n,3n))

French and Austria students analyzed data:

Bachelar thesis of Barbara Geier:

More about cross-section measurements of neutron threshold reactions – Ondřej Svoboda
Accuracy of gamma spectroscopy measurement

Source detector distance – 23 mm

Yttrium – thicker sample (~ mm) → if different side facing to the detector → small difference:

\begin{align*}
N(\text{side a}) &= 1.990(10) \times 10^{10} \\
N(\text{side b}) &= 2.017(13) \times 10^{10} \\
N(\text{all}) &= 2.000(7) \times 10^{10}
\end{align*}

Phenomena is quickly decreasing with bigger source detector distances

Gold - very thin foil → no difference which side is nearer to detector
Different measurements in the same source detector distance → more or less only statistical differences (differences smaller than ~ 1 %)

Different source detector distance → influence of systematic uncertainties:

1) Efficiency determination uncertainties
2) Coincidence corrections, the biggest for position near to detector
3) Influence of sample size

The differences reach values about a few percents, possibility to improve situation by improving of efficiency accuracy
Reactor LVR-15

It is not a device of NPI of ASCR

It is a device of NRI plc

Power up to 10 MW_{th}

usually used about 8 MW

flux in the core: 10¹⁴ cm⁻²s⁻¹

number of horizontal channels

rent by NPI

thermal neutron flux in the channels: 10⁷ cm⁻²s⁻¹
Neutron guide installed at reactor channels
(NPI ASCR devices)

Beam cross-section: $4 \times 60 \, \text{mm}^2$

Beam intensity through cross section: $(1.5\pm0.2) \cdot 10^7 \, \text{n cm}^{-2} \, \text{s}^{-1}$

Angular deviations of beam below 0.5 °

Gamma-gamma coincidence spectrometric set-up